Maryland gardeners are adapting to climate change

How are Maryland gardeners adapting their gardens and green spaces to climate change? We posed this question to our colleagues in the University of Maryland College of Agriculture and Natural Resources and several of them shared examples of everything from composting and food gardening to planting trees and native plants, installing rain gardens, and more.

Action on climate change is needed on a large scale, and our individual actions at home and in our communities all add up too. Check out our Story Map showcasing the variety of ways Marylanders are adapting their green spaces with climate change and sustainability in mind. Then take our quick poll at the end of the Story Map and let us know: Are you doing climate-resilient gardening?

Screen shot of the climate-resilient gardening story map

View the Story Map

Learn more:

By Christa K. Carignan, Coordinator, Digital Horticulture Education, University of Maryland Extension Home & Garden Information Center. Read more posts by Christa.

Climate Change and Sea Level Rise with Dr. Kate McClure – The Garden Thyme Podcast

Listen to the podcast

In this month’s episode, we are speaking all about Climate Change and Sea Level Rise with Dr. Kate McClure from the University of Maryland Sea Grant Extension Program. We talk about the effects of climate change that we are seeing right now and what sea level rise looks like.

Dr. McClure also gives us some online prediction tools to help us better plan our landscape for the future. 

We also have our: 

  •  Native Plant of the Month – Staghorn sumac (Rhus typhina)
  • Bug of the Month – Baltimore checkerspot (Euphydryas phaeton)
  • Garden Tips of the Month

If you have any garden-related questions, please email us at UMEGardenPodcast@gmail.com or look us up on Facebook at https://www.facebook.com/GardenThymePodcas. For more information about UME and these topics, please check out the UME Home and Garden Information Center and Maryland Grows Blog at https://marylandgrows.umd.edu/. 

 The Garden Thyme Podcast is brought to you by the University of Maryland Extension. Hosts are Mikaela Boley- Senior Agent Associate (Talbot County) for Horticulture, Rachel Rhodes- Agent Associate for Horticulture (Queen Anne’s County), and Emily Zobel-Senior Agent Associate for Agriculture (Dorchester County).

Theme Song: By Jason Inc

University programs, activities, and facilities are available to all without regard to race, color, sex, gender identity or expression, sexual orientation, marital status, age, national origin, political affiliation, physical or mental disability, religion, protected veteran status, genetic information, personal appearance, or any other legally protected class.

Poison ivy management strategy: scorched earth or pick my battles?

Recently, as I was walking my property and spotting some more returning poison ivy here and there and lamenting the existence and stubbornness of this pesky weed, a novel thought (for me) popped into my head: I know poison ivy is a native plant – does this mean it is right to totally eradicate it?

A study showing more CO2 in the atmosphere means we might get stronger, more potent poison ivy in the future with climate change, so it’s probably good to determine a strategy moving forward.

About five years ago, I had made an attempt to clear a space on my property beyond my fence and into a drainage ditch that was hard to reach, but getting overrun with tree-smothering vines, English ivy, and all matter of problematic brush. After several hard hours of pulling, clipping, snipping, and dragging, I declared the job done. In the next few days, poison ivy rash made its appearance up and down both arms, a bit on my legs, and even a few places on my body I must have rubbed. This took weeks to heal, and I resolved to be more careful in the future. I hadn’t even realized poison ivy was back there.

The next year, I wore pants, got better educated on how to spot it, and kept a better eye out for poison ivy while I worked on maintaining the same space. Poison ivy again got me pretty bad on the arms!

Continue reading

Biological pest control: parasitoids

¿Hablas español? Aquí esta una traducción: Control biológico de plagas: los parasitoides

Parasitoids are natural enemies of pests that, like predators (ladybugs and flower flies) can help us keep pest populations at bay or eliminate them from our gardens.

Parasitoid or parasite? Let’s learn the difference between these terms

Before saying more about this group of natural enemies, let me tell you that it is very common to confuse the term “parasitoid” with the term “parasite.” Parasites and parasitoids have in common the need for a host for their development. The difference between the two types of organisms is that parasitoids kill their host to complete their life cycle. That is, the parasite can live at the expense of the host without having to kill it, while the parasitoid ends up killing its host upon completion of its life cycle. Parasites are generally known to be annoying and even transmit diseases to animals, plants, and humans, while parasitoids are beneficial insects, as they help us control pests.

What is a parasitoid?

Parasitoids are insects that insert their eggs into the body or egg of another insect (host) in order to complete their life cycle. Parasitoids go through complete metamorphosis, four different stages of development: egg, larva, pupa, and adult. To finish their development, the parasitoids must feed on their host, and the females first deposit their eggs in their host. As soon as the parasitoid egg hatches, the larvae begin to devour the tissues of their host. Once the larvae reach a certain size, they become pupae, after which the adult emerges, killing the host.

Parasitoids can be classified according to their oviposition (egg-laying) behavior. Endoparasitoids are the parasitoids that lay their eggs inside the body or egg of their host. In contrast, ectoparasitoids oviposit on top of the body of their host, that is, on the surface of their body. To see these fascinating creatures in action you can, watch a video of endoparasitoids and one of ectoparasitoid activity.

Life cycle of an ectoparasitoid (adapted from Presa-Barra et al 2020)

life cycle steps of an ectoparasitoid

Life cycle of an endoparasitoid (adapted from Presa-Barra et al 2020)

life cycle steps of an endoparasitoid
Continue reading

Let’s find skipper butterflies in Maryland using iNaturalist!

A Silver-spotted Skippper on wild bergamont flowers in Maryland, observed recently by iNaturalist user Andy Wilson

I have been writing blog posts for Maryland Grows on a regular basis for a while. To do this, I usually meet with Christa, the blog manager, every 6 months and plan on the topics I will cover over the next few months. When we do this, we seek to cover the needs we see from readers, but sometimes the topics come to us as a result of our discussions. This is exactly what happened for today’s topic. Today, let me tell you the story of how this came to be, and at the same time show you a great free tool available at our (literal) fingertips!

The story

Picture myself and Christa on Zoom, planning dates and topics for the next few months. It is February and it is cold outside. We have been making our way through the upcoming months, thinking of what each one will look and feel like, and what will be growing and buzzing around in each of them. August comes. How is August in Maryland? What do we usually see around? What issues are common in green spaces in August?

I think of August and in my very pollination-biologist-biased way start thinking of the pollinators we see in August… And what comes to me is “butterflies!” I remember writing about butterflies in the past, so maybe butterflies are a bit redundant as a blog topic. However, I don’t remember writing about a specific group of butterflies called “skippers,” which are common in Maryland. So, sure, let’s write about skippers, but what skippers are around in August? As we discuss and try to narrow down the topic, I open this incredible tool I use very regularly to learn about local species, report observations I make, and do research in my lab. This magical incredible tool is called iNaturalist.

So, there I am, opening iNaturalist’s website, and doing a quick search to find out the most common and most abundant skippers we find in Maryland in August. I am doing this, and Christa is intrigued; what am I doing? How am I figuring this out? I decide to share my screen to show her what I’m doing. Christa is amazed. You can do all that with iNaturalist?! The world needs to know! So, there we have it. Our blog topic showed itself to us. Today’s blog will be about what iNaturalist is, how to use it, and what type of information we can share with and learn from it. I hope that this blog will motivate you to start using it as well, and, like me, every time learn something new about species here and elsewhere in the world.

iNaturalist; ever heard of it?

We live in the times of social networks, like Twitter, Instagram, and Facebook… And as it turns out, social networks are really useful to science too! iNaturalist is one of those networks!

iNaturalist is a global social network that allows people to submit, find, and explore biodiversity observations from around the world. What does this mean? This means that through this network, every time a person observes an organism anywhere in the world, they can take a picture of it, upload it to iNaturalist, and then have the network help them identify what it is through its picture (using image recognition software), its location, its date, and the input of other members. This information is then stored in a public database, which can then be explored easily by anybody, including scientists, you, me, kids, conservation agencies, and more! At the end of the day and using all these data, the network can output maps and other information of any species ever added, allowing for the reported localities to be found, and, if the user wants to, visited to try to see the organism in question. Today, iNaturalist has over 5 million users worldwide, with over 109 billion observations of over 380,000 species!

OK. But how does iNaturalist work?

To explain this, let’s come back to my skippers story. I am talking to Christa and want to know what the most abundant skipper in Maryland may be, and whether it is present in August. To do this, I first go to the iNaturalist website (if on a computer; otherwise, I would open the app on my phone). This is what the page looks like.

Screen shot of the iNaturalist home page
Continue reading

How can you improve your soil?

a sloping landscape partially planted with cover crops
A cover crop of spring seeded oats is included on this slope with grass and trees. Photo: A. Bodkins

Healthy soil can sustain plant growth, prevent environmental damage, mitigate stormwater runoff, and help recharge and clean groundwater. 

Soil type is probably not something that people consider when they move to a new property, so it reminds me of the statement “you get what you get and you don’t throw a fit”. However, it is no secret that soils are not all created equally in their ability to grow plants. To make matters worse, the soil is constantly being manipulated to accommodate our needs. When infrastructure like roads and buildings are constructed soil is moved and in many instances, there may not be any native soil profiles still intact on the property. Often a small layer of topsoil is put back onto the landscape after construction and regrading of the land, but there is no guarantee that it was the topsoil found there before construction began. Once the excavation is completed there is no going back. This article from Penn State Extension, Can Disturbed Soils Grow Healthy Landscape? is a great read. If you suspect that the soil you are planting vegetables into has been hauled in from another location, it is wise to get the soil tested for lead content. Some labs also test for heavy metals like arsenic (As), cadmium (Cd), and chromium (Cr), which can be found in soils on old industrial sites.

Soil is the gift that can keep giving, but there are some management practices that can help improve all soils. The physical, chemical and biological processes of soil are all interconnected. If you want to learn more about your own soil, I recommend the Kansas State publication that walks you through the steps to Estimate Soil Texture by Feel. Knowing the soil texture in your garden is one piece of the soil puzzle.

Soil organic matter increases water holding capacity, improves water infiltration, serves as a source of micro and macronutrients, and provides large particles for micro and macroorganisms to break down.  Soils that are high in clay or sand can benefit from the addition of organic matter, which comes from anything that was once alive. Macro and microorganisms help to break down organic matter and release nutrients into the soil. There are many forms of organic matter that include compost, plant material,  livestock waste, humus or leaf litter.  

dark soil is rich in organic matter
A cross-section of healthy soil. Photo: USDA

Cover crops are another way to improve your soil because they capture excess nutrients that are left over from the growing season and prevent the nutrients from becoming environmental pollutants. Cover crops also prevent soil erosion from wind and rain during the late fall, winter, and early spring seasons when weather is not appropriate for most vegetable or agricultural crops. Once cover crops are terminated they can be plowed into the soil and add organic matter. This is called green manure. I’ve found that in my own garden, cover crops can also help prevent weeds from growing. Some cover crops like forage radishes die and create natural pathways through the soil for water to flow.

buckwheat cover crop planted over a vegetable garden soil
Buckwheat that I planted as an early season spring crop to help reduce weed germination in my vegetable garden. I had planned to terminate it and plant a late crop of cucurbits, but changed my mind after it was growing so beautifully and I saw all the insects that were visiting it daily.

Other management practices to help your soil include regular soil testing to monitor any changes and keep the soil pH in the correct range for your desired plants. Limit soil compaction by keeping vehicles, equipment, and even people from walking through gardens, especially when the soil is wet. At the very least, I think the best practice for improving and keeping your soil healthy is to leave it alone as much as possible, keep it covered with plants that are not invasive, and let the natural processes of the Earth work together to benefit the soil.

By Ashley Bodkins, Senior Agent Associate and Master Gardener Coordinator, Garrett County, MarylandRead more posts by Ashley.


This year, the University of Maryland Extension Master Gardener Grow It Eat It Program celebrates the resource that supports all life on earth – soil! Look for soil education programs offered by your local Master Gardener program, and visit the Home & Garden Information Center website for more information about soil health.

did you know soil is a natural resource and a living ecosystem

Celebrate National Moth Week

A moth feeding on nectar of a purple  verbena flower
Hummingbird Clearwing. Photo: M. Talabac

The last full week of July is National Moth Week, and I encourage everyone to take a closer look at the vast diversity of moths that fill our natural world. Butterflies and moths belong to the same insect group, but moths far outnumber butterflies in species diversity. Since many moths have muted colors or fly at night, we’re largely unaware of this bounty. Let’s take a whirlwind appreciation tour of the group to illustrate the amazing, bizarre, and quirky features of this major insect order.

Moth adults come in all shapes and sizes, and like butterflies, wings are their most prominent feature. There are “micro-moths” whose wingspans are less than an inch, and giant “silk moths” up to 6 inches, making them the largest moths in North America. (Our native silk moths are not closely related to true silk moths, but they got the name because people thought they could be farmed for silk.) The wings of some moths look like mere slivers, seemingly insufficient for flight, while others are tucked around their body so they look fairly cylindrical. Some lay so flat at rest with their wings spread that you’d swear they were two-dimensional.

Continue reading