Site icon Maryland Grows

Vanilla and food: not plain when it comes to pollination

You decide to bake some cookies. You have your butter stick ready to go, you open your pantry to look for the ingredients. There is flour, oats, sugar, chocolate chips; things look good. You then realize that you’re missing that one ingredient, the one that makes it all come together: vanilla! Luckily, you can quickly buy some fresh vanilla pods or vanilla extract. In a couple hours you are there, enjoying your cookies and the pretty fall landscape.

This is all good, but have you ever thought how that spice – vanilla – gets to your pantry? And who is allowing for that to happen? In today’s blog, the second in our comfort food series (part 1 is here), we will talk about this spice that is so present in our lives that we may not even think about it. Let’s talk about vanilla and how appreciating it is tightly linked to understanding pollination and the key role of pollinators in our food system.

What is vanilla?

What we consume as vanilla is the fruit and the seeds of an orchid, the vanilla plant. This fruit comes in the form of a pod, and the tiny “dust” that comes off it is the hundreds of tiny seeds that this plant produces in each fruit. Vanilla orchids have a vine habit and in the wild are found clinging to trees in the forests of Central and South America. Considering this natural habit, all vanilla cultivation is done vertically, using different types of support.

Vanilla orchids have a vine habit, and the pollination of their flowers leads to the development of the pods and the tiny seeds we consume. Photos: M. Paredes, M. Manners, Joy.

Although vanilla is now cultivated in several parts of the world, it is accepted that all cultivated varieties/species are Meso- and South American. Indeed, the plant species had been known to be selected and used by Natives of those regions prior to the arrival of Europeans in the New World, but it is only following that arrival that Europeans created a strong demand for the spice. From this respect, if we can today enjoy our yummy cookies and cakes (and more!), recognition is due to the ancient selection done by Aztecs, Totonac, and Mayas in the current Mexican territories.

Each plant produces several pods that are harvested and dried before commercialization. Historical descriptions (here, from 1651) indicate that the plant we know today was cultivated by Natives in current Mexico, who called it “Tlilxochitl” or “black flower”. Images: Hernández (1651), Foam.

Today, vanilla is produced mostly in Madagascar, Indonesia, and Mexico, and is the second most valuable spice in the world (after saffron). Its production, however, experienced a bumpy road and still today goes through regular difficulties, which leads to extreme annual fluctuations in vanilla prices. In fact, vanilla plantations occur in regions regularly affected by extreme weather events, such as cyclones, which can destroy a whole year of production. These events lead to large variations in yield from year to year, leading to crazy changes in vanilla prices, going for example from $20/kg in 2010 to the current $350/kg.

How is vanilla produced?

Although vanilla became a European favorite quickly after it was first introduced to the continent, the production of vanilla pods remained elusive for a long time. Indeed, people realized very quickly that without active transfer of pollen to the stigma of the flower, the flowers would not develop into fruits (see how that works), and thus the much-searched-for vanilla beans would not develop at all!

In fact, after much observation of the plants in their natural habitat, people realized that their pollination required especially the visit of a group of bees restricted to the New World, the euglossines, or orchid bees. Restricted to South and Central America, these bees have strong associations with orchids, from which the males are known to collect floral scents they use for courting females (this is super fascinating, and worth a future blog post). Some species of this group of bees are currently suspected to act as pollinators of vanilla flowers in the wild. During their visits, they passively deposit pollen on the stigma of the flower, which leads to the vanilla bean development. Although these bees do pollinate, flower visits by these bees are not common, so even in regions with bee populations, fruiting rates remain relatively low.

In their natural habitats, vanilla flowers are thought to be pollinated by beautifully metallic euglossine bees. Photo: Gil Wizen,

Adding to this, once vanilla was “discovered” by Europeans, it was introduced into a variety of colonial lands, especially to Indian Ocean islands (e.g., Madagascar, the Comoros, la Réunion) and to French Polynesia. However, and because as I said before, the pollinators of this plant are restricted to the Americas, vanilla production was not successful in those regions. Plants would flower, but the lack of pollinators would lead to virtually no pod production. This changed when a solution was found. Indeed, there had been some early attempts to develop human-based pollination methods, which were as complex as impossible to use. It was finally a slave from the Réunion Islands, Edmond Albius, who developed a simple method to pollinate the flowers by hand, helped with a stick and his own fingers. It was only after this method development that vanilla production could bloom (actually, fruit 😉) to reach its current extent.

Edmond Albius was the Réunion slave who revolutionized vanilla production, developing the hand-pollination method still currently used today across the globe. Photos: Antoine Roussin (1863), F. and K. Starr.

Although one may expect the techniques to have changed since the first development of this method, the vast majority of today’s global vanilla production is still hand-pollinated following Albius’ technique! In other words, the production of the second most valuable spice in the world is currently based on pollination done by hand. And this is what I wanted to stress today. We hear a lot about the importance of pollinators, but I feel that the case of vanilla is such a clear example of how important pollinators are to maintaining not just food supplies, but also global economies: take the pollinators away and you lose basically the whole vanilla bean production chain and market. Doesn’t that make you feel especially thankful for pollination and pollinators for that great flavor in your cookies?

Happy Thanksgiving to all!

By Anahí Espíndola, Assistant Professor, Department of Entomology, University of Maryland, College Park. See more posts by Anahí.

Exit mobile version